A Message-Passing Model

for Highly Concurrent Computation

Alain J. Martin

Computer Science Department
California Institute of Technology

Caltech-CS-TR-88-13

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1988 2. REPORT TYPE 00-00-1988 to 00-00-1988
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Message-Passing Model for Highly Concurrent Computation £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 9
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A MESSAGE-PASSING MODEL
FOR HIGHLY CONCURRENT COMPUTATION

Alain J. Martin
Department of Computer Science
California Institute of Technology

Pasadena CA 91125, USA

1. Introduction

The photograph of Figure 1 shows a prototype of a highly-
concurrent distributed computer, built by the author at
the Philips Research Laboratories in the Netherlands. Be-
gun in early 1979, the design was completed in five months
and debugged in a few days; it worked flawlessly until the
UV-erasable memories began to show signs of amnesia.
The total effort had taken less than two man-years. The
hardware was a torus-like network of 36 “nodes,” each con-
nected to four neighbors. Each node was a simple but
complete computer consisting of a processor chip with 1
kbyte read-only storage, and a 256-byte random-access-
storage chip. The system was fully distributed: no com-
mon storage, common communication channel, or common
clock, Communication and synchronization were achieved
by message exchange among neighbor nodes using a bit-
serial half-duplex protocol. Each node contained a simple
operating system for the implementation of communica-
tion, process interleaving, and storage allocation.

The system was based on the programming paradigm
of concurrent processes communicating by explicit ex-
change of messages. The most remarkable aspect of the
model—at that time—was that the mapping of a dis-
tributed computation on the network did not require the
programmer to know the size of the machine: the com-
putation could grow and shrink dynamically through the
network as if the network were infinite.

In spite—or because—of its simplicity, the “Torus” was
a dramatic demonstration of the feasibility of the model as
a general-purpose distributed computer [1],[2]. The crucial
steps towards a full-blown machine were taken by C.L.
Seitz at Caltech with the construction of a 4-node “Cosmic
Cube” in 1982, and a 64-node version in 1983(3].

To appear in Proc. 3rd Conf. on Hypercube

Concurrent Computers and Applications,
19-20 January 1988, California Institute

of Technology - JPL, Pasadena CA 91125

-Figure 1~

Based on essentially the same computational model
as the Torus, the cube uses a binary n-cube network
instead of toroidal mesh, with the requested hardware
upgrading of the nodes: a more powerful processor with
a floating-point co-processor, a larger storage, full-duplex
asynchronous channels. A version of C, extended with
communication primitives is available as programming
language, together with the required support software for
loading the programs into the nodes.

An important difference with the Torus, however, is the
availability in the Cosmic Cube of a deadlock-free protocol
for routing messages between any two nodes. The Torus
was built on the premiss that locality of communication
should be maintained by the programs; such a system
is called a processing surface. The Cosmic Cube drops
the locality requirement by providing a routing protocol
between arbitrary nodes.

The Cosmic Cube prototype proved so successful
that the design was licensed and rapidly commercialized
(1985). Several manufacturers are already offering “cube-
machines” which are routinely used by researchers—at
Caltech and elsewhere—to solve computationally demand-
ing scientific problems [4].

We first formulate the problem of constructing dis-
tributed computations in terms of mapping a “computa-
tion graph” on an “implementation graph”. We next intro-
duce the program notation which we illustrate with some
examples. We then discuss the mapping issue: process
interleaving, communication, routing. Finally, we discuss
the choice of a network.

2. Computation Graph and

Implementation Graph
In [5], the problem of designing distributed computations
has been formulated as a two-stage process. In the first
stage, a computation is designed as a set of communicating
processes connected by channels. A process is a sequential
computation described by a sequential program operating
on local variables, and by communication actions on
channels. Processes do not share variables: they
communicate with each other and synchronize their
activities by means of communication commands. Such
a computation is said to be distributed.

In more traditional forms of concurrent processing,
the set of processes iz statically defined. But in an
environment where the potential concurrency is very high,
we prefer to let the concurrency of the computation
vary according to the size of the problem in much the
same way as the depth of a recursion or the number
of steps of an iteration. We therefore introduce the
possibility to create and destroy processes dynamically.
A concurrent computation is regarded as a graph, called
the computation graph, in which the vertices are processes
and the edges are channels. The computation graph may
grow and shrink during execution according to the needs
of the computation. At this point, the correctness of the
computation should be guaranteed independently of the
structure of the machine on which the computation is to
be mapped.

In the second, mapping stage, the freedom to create
an unbounded number of processes has to be reconciled
with the finiteness and the topological restrictions of the
distributed architecture. Such an architecture is also rep-
resented as a (now fixed and finite) implementation graph,
whose vertices are the nodes of the machine and whose
arcs, the links, are the physical communication channels
between the nodes. In fact, the computation graph formal-
izes the needs of the computation in terms of active com-
ponents and their topology. The implementation graph
formalizes the constraints imposed upon the computation
by a given architecture; that is, the possibly unbounded
number of processes has to be mapped on a finite num-
ber of processing and storage units with limited and fixed
communication channels among them.

3. The Program Notation

Several languages fit into the general programming model
we propose. For the purpose of this paper, we describe the
main features of a notation inspired by C.A.R. Hoare’s
CSP [6]. We therein describe only the communication
primitives, which differ from those of CSP.

Communication

Communication has two semantic functions: It provides
a distributed assignment statement and a synchronization
mechanism. A communication consists in the synchronized
executions of an input action in a process, say, p,
and an output action in another process, say, g. The
possibility for the two processes to communicate directly is
represented by an edge from ¢ to p in the communication
graph. Such an edge is called a channel and is directed
from the process performing the output to the process
performing the input. A channel is shared by exactly two
processes. As we shall see in the examples, two processes
may share several channels.

There are several reasons for introducing channels.
First, since we are describing a graph, we want to
introduce both the vertices and the edges. Second,
since we want to replicate identical processes, it is more
convenient to describe a process in isolation with its
dangling channels, and to compose several instances of
the process by abutment of channels. Third, whatever
notation is used, it is necessary to distinguish from each
other the different “services” that processes require from
other processes. In particular, it may be important not to
order messages related to different services. Associating a
channel with each type of service is a convenient solution to
this problem. Fourth, the use of several channels provides
a means to bypass the ordering of messages inside one
input queue, since messages on different channels are not
ordered.

Execution of input and output actions on the same
channel have to be synchronized, since a message cannot
be received before it has been sent. The slack of a channel
is defined to be the difference between the number of
completed output actions and the number of completed
input actions on the channel at any point in time. Let
s(C) be the slack of channel C, the synchronization
requirement is to maintain the relation 0 < s(C) < SB(C)
invariant, for a given integer constant SB(C) called the
slack-bound of C.

There are three types of communication primitives
according to the value of the slack-bound, namely: (1)
SB = 0, or (2) SB positive and finite, or (3) SB

- infinite, (see [7]). In the first case, the channel has no

buffering capacity: At any time, the number of messages
sent equals the number of messages received. In the second
case, the channel may buffer at most SB messages that
have been sent and not yet received. In the last case,
the channel may buffer an arbitrary number of messages.
From a synchronization viewpoint, commands of the third
type behave like P and V operations on semaphores.
For what concerns synchronization, the three types of
communication commands are semantically equivalent.

There is an important difference, however, for what
concerns message passing: In the case of type (3)
primitives, a channel must be able to buffer an unbounded
number of messages; If possible, it would make it possible
to implement a Turing machine!

First-in-first-out channels

We have already mentioned that the communication
commands implement a distributed assignment statement:
the nth message received on a channel is the nth message
sent on the channel. To enforce this property in the case
the channel has a non-zero buffer, it is necessary that the
messages be received in the same order that they are sent,
i.e., the channels have to be first-in-first-out.

Channel selection

The input and output commands defined above are
sufficient for programming entirely deterministic. processes.
But we want to allow for some form of nondeterminism.
For instance, we want to be able to construct a process
p communicating with two other processes by the input
channels X and Y. At some point, p is to receive a
message either along X or along Y, nondeterministically.
'In that case, we need a mechanism to select the channel on
which an input action is firable, i.e., the execution of the
action does not violate the synchronization requirement .

Even in scientific computations, non-determinism may
be introduced by variations in speed and differences in
convergence rates or termination behavior.

In the Torus, we defined a special form of input
action, called selection, operating on a given set of
input channels—in the example above, the set would be
{X,Y}—and on a so-called channel variable. Completion
of the selection amounts to completion of an input action
on one of the channels of the set on which a communication
is firable. When several channels can be selected, the
choice is nondeterministic. The identity of the selected
channel is recorded in the channel variable.

Since any selection mechanism requires to test whether
an action is firable on a given channel, we can as well
provide a boolean command that does just that. Such a
command, called the probe, has first been proposed in [8],
and is used in the Cosmic Cube. With communication
commands of the first type, as in the original definition of
the probe, the probe on channel X, denoted here by &X,
means “an action is pending on X”. With commands of
the third type, as in the Cosmic Cube, the probe on X
is defined only if X is an input channel, and means “the
buffer of X is not empty”.

In our experience, the combination of the probe and
input and output commands on channels provides a simiple
and yet general set of communication primitives. Let

creation of processes, and present some examples first.

4. Examples

Since we have not yet discussed the mechanisms for
creating processes, we assume in the examples that a
computation graph of the size and topology required by the
input parameters of the problem has already been created.
We just describe the internal structure of a process. (The
first two examples present very little interest from the
point of view of parallel algorithm design. They will be
used solely to illustrate the trade-offs between different

communication primitives. The solution of third example,
however, is believed to be new.)

Example 1: Nearest-neighbor computation

An array z occupies the points of a two-dimensional grid:
variable z;; at point (¢,7). The initial value of z is
zin. The final value of z is obtained by nearest-neighbor
iteration: For an internal point (7,7), the next value of
; ;- is computed as the function f of the current values of
z; ;, and of its four neighbors z;_3;, Zij-1, %iy1;, and
z; j+1. The iteration is supposed to converge to a fixed
point. This example is characteristic of many numerical
applications, e.g., the computation of Laplace’s equations
by finite differences.

A process is attached to each grid point (Z,7) to
compute the value of z;; at that point. We describe a
process p corresponding to an internal point of the grid.
From now on, = represents the element of z at that point,
and zin its initial value. We use local names for channels:
p is connected to its north neighbor by output channel No
and input channel Ni , to its south neighbor by output
channel So and input channel Si. No and Nt in p are
identical to S7 and So in the north neighbor, respectively.
The connections with the east and west neighbors are
similar.

Let us say that we are not sure about the convergence
of the algorithm, and that we want to look at the result
after 10000 iterations. The main body of the program—we
omit declarations and simplify initialization—is as follows.
i:= 0; x:= xin;

*[1<10000 --> No!x; So!x; Eo!x; Wolx;
Si?s; Ni?n; Wi?w; Ei%e;
x:= f(x,n,s,e,w);
i:= i+l

OO WN -

Observe that since all processes are identical, a slack-
bound equal to zero would lead to deadlock: All processes
start sending their current value of z but none can receive
it. It is easy to see that a slack-bound of 1 is necessary
and sufficient to avoid deadlock, and that the slack of any
channel is at most 2, independently of the slack-bound
selected. We can also arrange the processes in the manner
of a black-and-white checkerboard: the black processes use
the above program; the white processes use a program
derived from the above one by interchanging lines 2 and
3. In that case, deadlock is avoided even with slack-bound
zero for all channels.

Example 2: The knapsack problem

+ Given are a non-empty list ! of natural numbers, sorted in
non-decreasing order, and a natural number s. We want
to determine the truth of the predicate: “There exists a set
of elements of | whose sum is equal to s”. The predicate is
denoted by K(s,!) in the sequel. {The problem is known
to be NP-complete.)

We shall use the functions n(l) giving the number of
elements in !, hd(l) giving the first element of !, and

tl(l) giving the list obtained by deleting the first element
from !. The last two functions are defined only if
is not empty. The solution is based on the well-known
divide-and-conquer method, using the following property
(z=hd(l)):

true, if s = z;
K(s,0) = false,if s<z V s>zAn(l)=1;
K(s —z,tl(l)) v K(s, t(l)), otherwise.

The problem is ideally suited for a recursive solution:
Either K(s,!) can easily be evaluated directly or it
requires the evaluation of K(s — z,tl(!)) and K(s,ti(l)).
The main effort in constructing a distributed algorithm
goes to implementing a distributed procedure call. The
processes are connected in a binary tree. In the following
program, each process receives from its “father” process
the parameters s and ! [line 1] and sends to its father the
boolean result b [line 9]. If two new values of K have to
be computed, the process sends a pair of parameters to its
left “son” and a pair to its right “son” [line 6], and receives
a boolean answer from each of them [line 7).

1: Fi?(s,1l);

2: x:= hd(1);

3: [s=x --> b:= true

4: | s<x or s>x and n(1l)=1 --> b:= false

6: | s>x and n(1)>1 -=>
Lo!((s-x),t1(1)); Ro!(s,t1(1));

6: Li?b1; Ri?b2;

7: b:= (bl or b2)

8: 1;

9: Folb .

A slack-bound zero is sufficient to avoid deadlock. The
length of the list sent by a process to its sons is one less
than the length of the list the process received. Hence,
if n is the length of the initial list, we need a complete
binary tree of processes of depth n, i.e., containing 2" —1
processes, to execute the algorithm in n steps. Given
a binary tree of processes of depth k, 0 < k < n, the
complexity of the algorithm is of the order of k + 2"7%.

Example 3: Small bag of integers

We want to implement a bag—or multiset—of at most
2" —1 integers as a complete binary tree of depth n, each
process containing one element of the bag. The root of
the tree communicates with the user of the bag by means
of four channels—PUT, GET, HAS, and RES—ausing the
following four operations: :

e PUT?z : z is added to the bag. (A PUT action is
never attempted when the bag is full.)

e GET!z : The smallest element of the bag is returned
in z and removed from the bag. If the bag is empty,
then the special value NIL is returned.

e HAS?z; RES'b : b returns the number of occurrences
of z in the bag.

Each process communicates with its “right son” along
the channels PUTR, GETR, HASR, and RESR, and

similarly with its “left son”. Each process that is not a
leaf of the tree behaves as the user of the bag implemented
in each of its subtrees. For reasons of efficiency—we want
to achieve a complexity of the order of n for each of these
operations—we require that:

1) for each subtree, the smallest element of the bag
implemented in the subtree be kept in the root of the
subtree;

2) the tree be balanced. For each subtree t, if left(t)
and right(t) denote the number of elements in the left
and the right subtrees of ¢, respectively, we maintain:

0 < left(t) — right(t) < 1.

In order to do so, we introduce a boolean ¢ in
each process p wich is not a leaf, and maintain the
invariant:

g = (left(t) — right{t) = 1)

where ¢ is the subtree rooted at p.

Initially, all g’s are false, and all z’s are NIL, where
NIL is a constant chosen larger than any element in the
bag. The programs for a leaf process and for a non-leaf

process follow. Again, a slack-bound zero is enough to
avoid deadlock.

Leaf process:
1: *[[&PUT --> PUT?x
2: | &GET --> GET!x; x:= NIL
3: | &HAS --> HAS?y;
[x=y --> RES!1 | x<>y --> RES!0]
11 .

Non-leaf process:
4: x[[&HAS --> HAS?y;

B: [y<x --> RES!0
6: | y>x --> HASL!y: HASR!y;
RESL?a; RESR?b;
7: [y=x --> RES!(a+b+1)
ly>x --> RES!(a+b)
]
]
8: | &GET ~--> GET!x; GETR?r; GETL?1;
x,y:= nin(r,1) ,max(r,1);
9: [y=NIL --> g:= false
10: | y<>NIL --> [g --> PUTR!y
| not g --> PUTL!y
1;
11: g:=not g
12: 1;
13: | &PUT and x=NIL --> PUT?x
14: | &PUT and x<>NIL -->
PUT?y;
15; x,y:= min(x,y).nax(x,y);
16: [g --> PUTR!y
| not g --> PUTL!y
1;
17: g:= not g

18: 1] .

Communication behavior

The three examples, which we believe to be typical, show
that the choice of communication primitives is not critical
for the construction of the programs. Once the first pro-
gram has been transformed in the “checkerboard” fashion,
all three programs work equally well independently of the
value of the slack. Observe that, even when an infinite
slack is used, the number of messages in a channel is at
most two: the slack is bounded by the tight synchroniza-
tion among processes.

We also observe that communication actions tend to
occur in sequences: eight in a row in the first an example,
and up to five in a row in the last example. Furthermore,
the order among actions of a sequence is not specified by
the problem. Worse, choosing an arbitrary order may lead
to deadlock, whereas executing the actions of a sequence
concurrently would not. This is the case in the first
example, where executing all 8 actions concurrently does
not require slack 1 or a checkerboard organization of the
processes.

Systolic and diffusing computations

In the first example, once the processes are started, their
activity is a continuous alternation of of internal compu-
tations and communications with the four neighbors. A
computation with such a behavior has been called a “sys-
tolic computation”. In the second example, the activity
diffuses from the root of the tree towards the leaves, and
then shrinks from the leaves towards the root. We call a
computation with such a behavior a “diffusing computa-
tion”. But, if the first example were complete, the compu-
tation would also contain the passing of the parameters—
the initial values of z—and the collecting of the results—
the final values of z. In that case, it would also contain a
diffusing phase: The parameters are propagated through a
spanning tree of the computation graph—called the diffu-
sion tree—starting at a process (the root of the diffusion
tree) which is connected to the input device and diffus-
ing towards the leaves of the tree. It would also contain a
shrinking phase: the results have to be collected following
the edges of a spanning tree in the direction of its root, i.e.
a process that is connected to the output device. (In gen-
eral, the two spanning trees are identical.) Hence any com-
plete computation comprises a diffusing phase, a systolic
phase, and a shrinking phase. (A computation sometimes
consists of a repetition of these three phases.)

5. Process Creation

In most computations, different input parameters lead to
different computation graphs. (In the Knapsack example,
the maximal depth of the tree is equal to the number of
elements in the set, and the precise size of the tree depends
on the elements in the set.) Hence, it may be difficult or
even impossible to determine the size of a computation

graph before execution. It may also be inefficient to do so, .

since not all processes of a computation graph are always
active at the same time. We shall therefore include the
possibility to create processes during the computation.

Creation of a process p may be postponed until
that point in the computation where another process fp
reaches an output action on a channel linking p and
fp. We call this technique “lazy creation”. Another
description of the technique is that the processes are
created but left “dormant” until the first input action
activates them. A dormant process uses no storage.
With this technique, the creation of processes follows
the diffusion tree. Processes obey the commandment
“Thou shalt procreate, but thou shalt not kill” according
to which processes may create other processes in a
hierarchical way, but do not kill other processes—instead,
a process “dies” after completing the last action of its
program.

Clearly, creation of a process implies its placement in
a node. Once process p has been placed in node n, the
information about the pairing (n,p) has to propagate to -
all direct neighbors of p, since these processes will need
the information in order to communicate with p.

Three different mapping and placement strategies can
be considered:

e Static creation and static placement The computa-
tion graph is fixed and placement is decided before ex-
ecution of the program, either by the programmer or
compiler. All processes are created and placed during
initialization of the computation. A simple initializa-
tion process in each node reads in the programs, and
creates and starts the processes. All initialization pro-
cesses are linked in a fixed tree that is a spanning tree
of the implementation graph rooted at one of the nodes
that are connected to the input devices.

e Dynamic creation and static placement Placement
is determined prior to execution by the programmer
or compiler. Processes are created dynamically when
they are first sent a message by another process.
Since the placement of each process is decided before
execution, the placement information of each process
is available to all neighbors of the created process. The
drawbacks of this technique are that, 1) dynamic load
balancing is excluded, and 2) all computation graphs
have to be subgraphs of the same “closure graph”—
e.g., all binary computation trees are subtrees of the
infinite complete binary tree. However, we think that
the advantage of this approach—simplicity—outweighs
its drawbacks.

e Dynamic creation and dynamic placement Creation
of processes is “lazy”, and placement is decided during
the computation. Placement strategies can deal with
load balancing and arbitrarily modifiable computation
graphs. The overhead involved in the placement
algorithm and in the routing of placement information
has to be weighed against the generality of the method.

6. Implementation Issues

The concern for keeping the processors (nodes) usefully
busy may rapidly become self-defeating if it leads to
solutions in which a large portion of the processor time is
spent in such overhead activities as load balancing, process

migration and scheduling. We have adopted the strategy:
“the simplest scheduling is no scheduling”, supported by
what we call a “saturation policy”: The process grain is
small enough and the problem sizes are large enough that
the number of processes for any non-trivial problem is at
ledst an order of magrnitide larger than the number of
nodes. Consequently, any reasonable placement strategy
guarantees that each node is saturated, ie., it contains
enough processes to be active most of the time.
Hence, the implementation issues are:

e The interleaving of processes in one node.

¢ The implementation of communication.

e The routing of messages between arbitrary nodes.

Interleaving of processes in a node

Let us assume that we have chosen to implement the
second mapping strategy (dynamic creation and static
placement). After compilation, each process has acquired
a global name, the global names of its neighbors, and their
addresses (node numbers). For an arbitrary node n, we
shall describe how the a priori concurrent activities of the
processes inside n are simulated by interleaving. We still
make no assumption about the implementation graph.

Since the activity of a process is an alternation of
computation and communication, we assume that a node
contains one or several computation processors and one
or several communication processors. For the sake of
simplicity, we assume here that there is just one processor
of each type. The generalization is straightforward. The
computation processor executes sequences of computation
actions. The communication processor executes sequences
of communication actions.

The set of processes inside n is partitioned in two
disjoint sets: the set of computing processes—processes
currently executing a computation sequence , and the set of
communicating processes—processes currently executing a
commmunication sequence.

The identities of the computing processes are kept
in a priority queue, called the “computation queue”,
according to some priority scheme, so as to guarantee
that each process is eventually selected for execution. At
any time, the first process in the queue is the currently
running process, i.e., the process currently executed
by the computation processor. The identities of the
communicating processes are kept in a similar queue—the
communication queue.

The execution of the running process proceeds uiitil
the process either terminates or reaches a communication
action. In both cases, the next process in the queue,
if any, becomes the running process. In the case where
a communication action has been reached, the running
process is removed from the computation queue and added
to the communication queue. Upon completion of the
communication, the process is put back in the computation
queue: The interleaving of the communication processes is
exactly symmetrical.

The interleaving strategy just described introduces
restrictions on the computation concurrency: Concurrent

processes that are mapped in the same node can no
longer proceed concurrently, since their activities are
interleaved. The interleaving restricts the class of possible
states reached by the implemented computation. But the
class of states reached is still a subset of the class of
states reached by the implementation-free computation.
Hence the implementation does not introduce deadlock if
(i) the creation of a new process is always possible, i.e,
there is enough storage space inside the nodes; and (ii)
the implementation of communication does not introduce
deadlock.

Implementation of communication

Let us consider the implementation of a matching pair of
communication actions C!(ezp) and C?(var) in processes
X and Y, respectively. C is the global name of the
common channel; ezp is the expression of X the value of
which is to be assigned to variable var of Y. We assume
the channel to have slack-bound zero.

According to the semantics of communication prim-
itives with slack-bound zero, the communication can be
completed if and only if both communication actions are
pending, i.e. both X and Y have reached the action of
the matching pair. In the implementation of C!(ezp) in
X, the predicate “a communication action on C is pend-
ing in Y ” is implied by the truth of the Boolean variable
¢{X.C) . The Boolean variable ¢(Y.C) plays an equivalent
role in the implementation of C?(var) in Y. A possible
implementation is as follows:

C!(exp) in X:
1: q(Y.C) <-- true;
2: [q(X.0);
3: q(X.C):= false;
4: SEND(exp)

C?(var) in Y:

[q(Y.0)];
q(Y.C):= false;
q(X.C) <-- true;
RECEIVE(var)

w ;o>

&C in Y: q(Y.C)

The above implementation illustrates several impor-
tant points.

e The first three commands of Cl!(exzp) and the first
three commands of C?(var) implement the synchro-
nization part of the communication. Commands 1 and
7 are remote assignments called signalling. A signal
from X on C [line 1] sets ¢(Y.C) to true in Y.
(Similarly for the command of line 7.) A signal is an
unsynchronized communication action: A signal in X
terminates independently of the state of ¥ . The com-
mand of line 2 is a wait action: Operationally, it stands
for “wait until g(X.C) holds”. (Similarly for the com-
mand of line 5.)

¢ SEND and RECEIVE implement the distributed
assignment of ezp to var. When no message
is transmitted, i.e. the communication is used
for synchronization only, SEND and RECEIVE are
omitted.

e From a correctness point of view, a running process
need be interrupted only when it reaches a wait-
action that cannot be completed and when it reaches a
RECEIVE action, since the process that performs the
corresponding SEND may be in the same node. From
the point of view of efficiency, since the signal, SEND,
and RECEIVE actions are likely to be time-consuming,
a running process should delegate the execution of
the whole communication action to the communication
process.

¢ If type (3) communication primitives are used, the
implementation of Cl!(exp) and C?(var) reduces to
SEND(ezp) and RECEIV E(var).

e When a computation process reaches a communication
action, the placement information is used to determine
the node address of the destination process and the
link along which the routing should be initiated. If
the destination process is in the same node as the
source pracess, the communication is carried out by
the processor.

As already mentioned, communication actions tend to
appear in clusters inside a program. The same holds true
for probes; In general, a set of guards containing several
probes has to be evaluated at once. The overhead for
useless process switching between the queues should be
avoided between the actions of a cluster.

We need a mechanism to indicate the beginning and
end of a cluster of communication actions. We can
either let the compiler add the information or we can
introduce communication primitives that operate on a set
of channels. Such a set of primitives was used in the Torus.
A process could send a message to several neighbors in
any order—we called this action broadcast, and receive
a message from several neighbors in any order—we called
this action collect. A process could also select a true probe
out of a set by an action called select.

But we prefer to be slightly more general and introduce
a parallel construct || to indicate that an arbitrary set of
communication actions has to be executed concurrently.
For instance, we can use the notation ||(z1,22,z3) to
indicate that the three communication actions zl1, z2,
and z3 should be executed concurrently. The first
example could be modified as

1: i:= 0; x:= xin;
2: *[i<10000 --> || (No!x, So!x, Eo!x, Wo!x,
Ni?n, Si?s, Ei%e, Wi?w);

4: x:= f(x,n,s8,e,w);
5: i:= i+
6: 1

In the implementation of the parallel construct,
all component actions of the construct are initiated

concurrently. The execution of the construct terminates
when all components actions have been completed.

Avoiding incoming-message queues

The management of incoming messages by the node is one
of the most serious problems encountered when infinite-
slack primitives (unblocking sends) are used, since the
number of messages to be buffered is unbounded. On
the other hand, when finite-slack primitives are used,
the maximal number of messages to be buffered for each
process is known: It is the value of the slack, which
has been declared by the programmer. It is therefore
possible to allocate the necessary space in the state space
of the process; intermediate buffering is not necessary.
The advantages of this scheme, which was used in the
Torus, should not be underestimated. It is probably
worth the extra communication overhead. (We have seen
that zero-slack communication primitives require three
elementary communications actions vs one for infinite-slack
primitives.)

It might be possible to have the best of both worlds if
the programmer accepts the extra effort. The programmer
uses infinite-slack primitives (non-blocking sends), but
limits the effective slack of each channel—which occurred
automatically in the three examples given. And he declares
the effective slack in the programs. (The analysis necessary
to determine the slack is already a part of the analysis for
proving the absence of deadlock.) v

Now, the corresponding buffer space can be allocated
in the local space of the processes, as in the case of
slack-zero primitives. And the incoming information is
processed immediately: there is no need for the processes
to rummage through messages queues to find the relevant
information.

7. Communication Between Nodes
The parameters of a message are:

<destination_node,
destination_process,
channel_name>

in the case of a signal,

<destination_node,
destination_process,
output_value>

in the case of a SEND.

Upon receiving a message from a link, a communica-
tion processor, say, in node n, determines the destination
node of the message. If the destination is n, the message
can be immediately consumed by the destination process,
i.e., it is stored in the already reserved space in the work-
ing space of the process. If the destination is not n, the
transit message has to be forwarded to another node. The
transmission of transit messages poses three problems:

e First, for each implementation graph, there must exist

a simple routing function to determine the route of a

message to any destination node.

¢ Second, the overhead in the transmission of a message,
in particular the interference between the activity of
the different link-processes involved in the transmission
and the rest of the computation, must be carefully
assessed and controled. This is probably one of the
most difficult engineering issues in the design of such
systems.

e Third, transit messages may completely congest the
routing space of a node. It may happen that a cycle
of congested nodes is formed in the implementation
graph, and each transiting message in a node of the
cycle has to be transmitted to the next node in the
cycle. Such a situation is obviously a deadlock.

In the Torus, the form of deadlock just described
cannot occur since there are no transiting messages, due
to the locality requirement. In the Cosmic Cube, deadlock
is prevented by using a routing protocol that avoids the
formation of cycles in binary n-cubes.

A very elegant solution to the problem of transit
messages has been proposed in [9], and implemented in
the AMETEK machine described in [10]. It consists in
separating completely the transmission of transit messages
from the activity of the node by inserting a message routing
automaton as an interface between each node and the
network. With this solution, transit messages never enter
the node.

8. Choice of the Implementatibn Graph

Thanks to the top-down approach we have followed, the
choice of the implementation graph can now be guided by
several criteria related to the different issues identified so
far. These criteria are;

e The regularity of the graph and its extensibility.

e The possibility of mapping a large class of standard
computation graphs—e.g., meshes, tori, trees, shuffie
exchange networks—easily and efficiently.

¢ The existence of a deadlock-free routing protocol.

o A small diameter of the graph, so as to keep the routing
distance between any two processes small.

It is very difficult to quantify the above criteria and
to weigh them against each-other in a single figure of
merit; however, it is clear that the binary n-cube meets
all criteria very satisfactorily. Yet, the exponential nature
of the binary n-cube, which is one of its advantages
regarding diameter, mapping, and routing, may become
a serious problem when the size of the network grows
beyond, say, 64k nodes. At that point, the decrease in
wire density necessary to pack the network in a three-
dimensional space, will cause the communication latency
of the network to increase significantly, compared to two
or three dimensional networks like the torus or the mesh.

It has shown that it is possible to design an efficient
deadlock-free routing protocol for the torus as well [9].
Again, the protocol requires introduction of a partial order
on the links, and using a route that follows a decreasing
path, so as to guarantee that no cycle can be formed. A
priori, the torus does not contain enough links for such a
protocol to exist; but since the half-links are associated to

an output queue, it is possible to create virtual links by
introducing extra output queues, and to impose a partial
order on the virtual links.

This protocol makes the torus an efficient routing
network. This property, combined with the density of large
dimension tori compared to the density of large binary n-
cubes, makes the torus a serious competitor of the cube
when very large networks are considered, in spite of the
better mapping performance and smaller logical diameter
of the cube.

Acknowledgment

The research described in this paper was sponsored by
the Defense Advanced Research Projects Agency, ARPA
Order number 3771, and was monitored by the Office
of Naval Research under contract number N00014-792-C-
0597.

9. References

[1] Alain J. Martin; “The Torus: An Exercise in
Constructing a Processing Surface,” Proc. 2nd
Caltech Conf. on VLSI, 527-537, Jan. 1981

Alain J. Martin, “Distributed Computations on
Arrays of Processors,” Philips Technical Review 40,
8/9, 270-277, 1982

Charles L. Seitz, “The Cosmic Cube,” CACM,
28(1): 22-33, January 1985.

Geoffrey C. Fox et al. , “Solving Problems on
Concurrent Processors,” Prentice-Hall, 1988.

Alain J. Martin, “A Distributed Implementation
Method for Parallel Programming,” in
Information Processing 80, S.H. Lavington (ed.),
309-314, North-Holland, 1980

[2

[3

[4

[5

[6] C.A.R. Hoare, “Communicating Sequential
Processes.” Comm. ACM 21,8: 666-677 August
1978

[7] Alain J. Martin, “An Axiomatic Definition of

Synchronization Primitives,” Acta Informatica 16,
219-235, 1981

Alain J. Martin, “The Probe: an Addition

to Communication Primitives,” Information

Processing letters 20; 125-130 1985

[9] William J. Dally, Charles L. Seitz, “The Torus

Routing Chip,” Distributed Computing 1(4): 187-
196, Springer International,1986.

[10] Charles L. Seitz et al.. “The Architecture

and Programming of the Ametek Series 2010

Multicomputer,” These proceedings

8

